FP2 Algebra

1. Jan 2010 qu. 6
(i) Express $\frac{4}{(1-x)(1+x)\left(1+x^{2}\right)}$ in partial fractions.
(ii) Show that $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{4}{1-x^{4}} \mathrm{~d} x=\ln \left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)+\frac{1}{3} \pi$.
2. June 2009 qu. 2

Given that $y=\frac{x^{2}+x+1}{(x-1)^{2}}$, prove that $y \geq \frac{1}{4}$ for all $x \neq 1$.
3. June 2009 qu. 4

Express $\frac{x^{3}}{(x-2)\left(x^{2}+4\right)}$ in partial fractions.
4. June 2008 qu. 1

It is given that $\mathrm{f}(x)=\frac{2 \mathrm{ax}}{(x-2 \mathrm{a})\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)}$ where a is a non-zero constant.
Express $\mathrm{f}(x)$ in partial fractions.
5. June 2007 qu. 3

It is given that $\mathrm{f}(x)=\frac{x^{2}+9 x}{(x-1)\left(x^{2}+9\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence find $\int f(x) d x$.
6. Jan 2006 qu. 3

Express $\frac{x+6}{x\left(x^{2}+2\right)}$ in partial fractions.
7. June 2010 qu. 2

Given that the first three terms of the Maclaurin series for $(1+\sin x) \mathrm{e}^{2 x}$ are identical to the first three terms of the binomial series for $(1+a x)^{n}$, find the values of the constants a and n. (You may use appropriate results given in the List of Formulae (MF1).)

